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Edge waves on a beach of gentle slope E + 1 are considered. For constant slope, Ursell 
(1952) has obtained a complete set of trapped modes and shown that there exists only 
a finite number n of such modes, (2n+ l)/? < in, p = tan-’ E. For non-uniform slope 
the formulae for the trapped-mode frequencies were heuristically derived by Shen, 
Meyer & Keller (1968). For small n - O( 1) Miles (1989) has obtained formulae which 
coincide with Shen et aZ.’s (1968) with accuracy to O(E)  and differ from them by 0 ( e 2 ) .  
However, Miles’ formulae fail at n - 1 / ~ .  In  this paper it is proved that Shen et aZ.’s 
(1968) formulae are valid for all n (including n - l/s) with accuracy to O ( E )  and 
corrections of any order in E are given. Uniform asymptotic expansions are obtained 
for the corresponding eigenfunctions. These expansions give Miles’ (1989) result for 
small n. The formulae for the frequencies and the eigenfunctions have the same 
structure for both the full dispersion system and the shallow-water equation. For 
small n the frequencies for both models coincide with accuracy to 0(e2 ) ,  but for n - 
1 / ~  they differ by O(1).  In  the last section the effect of rotation following Evans 
(1989) is taken into account. All the asymptotics have formal character, i.e. they 
satisfy the corresponding equations with accuracy to O(sN ), N being arbitrarily large. 
The rigorous justification of these asymptotics is under way. 

1. Formulation of the problem and main results 
Consider a basin of depth z = - H ( y ) ,  0 < y < 00. The shore corresponds to z = 0, 

y = 0, H ( 0 )  = 0. We assume that the slope is small, H’(y) 4 1, and the function H has 
the form kH(y )  = h(r]), where r] = sky,  E = H’(0) < 1,  k is the longshore wavenumber, 
the function h ( y )  is smooth and analytic in a vicinity of the point r] = 0 and C, r] 2 
h(r]) 2 C, as r] +oo for some positive constants Cl, C,. Thus we include the cases when 
the depth is constant or increases at infinity. Setting @ = A cos (ot- kx) $(y, z) (@ is 
the velocity potential and x is the longshore coordinate) and introducing the 
coordinate 5 = kz, we get 

$ g + E 2 $ w - $  = 0, -h(r]) < 6 < 0, (1.1) 

$ s = A $ ,  f;= 0, (1.2) 

$ c + E 2 h ‘ $ 1  = 0, 5 = -h(r]) ,  (1.3) 
where A = 0 2 / g k .  

argument. Representing the solution of this system in the form 
Miles (1985) reduced the system (1.1)-( 1.3) to one equation by using the following 

$ = [exp (ipr]/s)[cosh ( ~ f ; ) + h ~ - l  sinh (~5)]f(p) dp, (1.4) 
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where K = (p2+ l);, f(p) is a new unknown function and the integration is carried 
along some contour in the complex plane p, we see that (1.1) and (1.2) are satisfied 
exactly and (1.3) gives an integral equation 

Jexp (iP7/4L(7, P)f@) dP = 0 (1.5) 

for the function f ( p ) .  Here 

L = Lo+ieLl, L,(q,p,A) = A cosh (Kh)-Ksinh (Kh), 

L l ( y , p ,  A )  = ph’[cosh (Kh)-hK-l sinh ( ~ h ) ] .  

Equation (1.5) differs from (2.5) in Miles (1989) in notation only. The function 
Z ( 7 )  = $(q, 0) which gives the free-surface displacement within a factor is given by 

and the edge-wave boundary conditions 

IZ(0)l < * 3 Z(7) -+ 0 (7 +a) 
provide the appropriate conditions for the function f(p). 

For the description of edge waves, the shallow-water equation 

E2(hZ’)’-hZ+hZ = 0 

is also used. This equation is easily rewritten in the form (1.5) in which L; = A,- 
~~h and Ls = h‘p are used instead of Lo and L,. Obviously, Lo = L;+O(h2), L, = 

Miles (1989) has shown that solutions of the problem (1.5), (1.7) exist only if h 
L;+O(h). 

satisfies 
A = €(2n+i)+E2h’(o)(n2+n+~)+o(s3), = 0, I ,  ... . (1.9) 

h = s i n [ ( 2 n + 1 ) / 3 ] , ( S n + 1 ) / 3 < ~ ~ ,  /3= tan-’€. (1.10) 

(1.11)  

On the other hand, in the case h = 7,  Ursell’s (1952) result gives 

Expanding in E for n - O(1) we get (1.9), while for n - l/s (i.e. (2n+l)s  - O(1)) 

h = s i n ( 2 n + 1 ) ~ - $ ~ [ ( 2 n + l ) ~ ]  cos (2n+1)s+0(s4).  

Obviously, for such n (1.9) fails. 
A similar argument is valid for the shallow-water equation. For h. = 7 (1.9) gives 

the exact result, (1.8) being the Laguerre equation, while for Ball’s (1967) profile 
h(7) = a( 1 -exp ( - 7 / a ) ) ,  a = kH( a), equation (1.9) is valid only for small n. Indeed, 
in this case the exact formula has the form 

h = s[(2n+ 1)(1  + ~ ~ / 4 a ~ ) ; - s ( n ~ + n + $ ) / a ] ,  

and for (2n+ 1 ) ~  - O(1) thc expansion in E differs from (1.9) by e2[(2n+ l ) s ] /8aZ  in 
the 0 ( e 2 )  term. 

Another approach to the problem (1.5), (1.7) was elaborated by Shen, Meyer & 
Keller (1968). Using the geometrical optics approximation, they proposed the 
formula 

i / r p ( q , h ) d q = n + + ,  n = 0 , 1 ,  ..., 
X E  
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where p(q, A )  is the positive solution of the equation 

K(P) tanh (K(P)h(d) = 4 (1.12) 

qo is the turning point, tanh h(q,) = A. Integrating by parts and changing the 
variables, p(q, A )  ~ p ,  we get 

q(p, A )  dp = 2n+ 1, (1.13) 

where q ( p , A )  is the solution of the same equation (1.12). Elementary calculations 
show that the left-hand side of (1.13) is a monotonically increasing function of A for 
monotonic h(7). The solution of (1.12) is a smooth integrable function only for 
sufficiently small A < tanh h(co). Therefore, (1.13) is solvable only for a finite number 
of n, and its solution A = A,(a), a = (2n+ 1) e ,  depends regularly on a for A,(a) < 
tanh h( 00 ). 

According to Miles (1989), for small n (1.13) differs from (1.9) by +2h"(0). 
Nevertheless, for h = 7 (1.13) gives A = sin (2n+ 1)e ,  which coincides with (1.10) with 
accuracy to O(e2) even for large n. 

Therefore two natural questions arise : (i) In what sense is (1.13) valid ? (ii) What 
is the relation between (1.9) and (1.13) 1 

Here are some answers. The eigenfrequencies in (1.5) have the form 

A = A , + € 2 A l + € 3 A 2 +  ... , (1.14) 

where A, depend on a, A, is the solution of (1.12), (1.13). The correction A, is given 
by the formula 

A, rm a: dp = Itm a, F / b  dp, (1.15) 
--m -a, 

where a,@) = b ( p ) / 4  K(p))$,  b(p)  = cash [~h(q)I ,  q = q(p, AJ, 

F b )  = ao[L,,p + i q p ( L * , + L o , , p )  + ~ o , p p + ~ ~ p p L o q q , l  

Here the arguments (q(p,A,),p,A,) of the derivatives of the functions Lo,l are 
omitted. The formulae for A,,j 2 2 are given in $2. 

Thus the formula (1.13) is valid for all n with accuracy to O(e) .  For small n (1.15) 
gives A, = fh"(O)+O(e) and (1.14) transforms into (1.9). For h = 7 (1.15), after rather 
tedious calculations, gives the second term in (1.11). 

An analogous result is valid for the shallow-water equation. Namely, the 
eigenfrequency A is given by (1.14) where A, is defined by (1.13), the function q being 
replaced by the solution q,(p, A,) of the equation ~ ~ h ( q ~ )  = A,, and A, is given by 
(1.15) where b = 1, q = qs, Lo,, = L:,l. For small n this formula again gives (1.9). It 
must be noted that in this case ( 1.13) is solvable either for all n or for a finite number 
of n only, depending on whether the function h increases or has a finite limit at 
infinity. 

These results are obtained through explicit evaluation of the eigenfunctions. Shen 
et al. (1968) noted that the eigenfunctions may be obtained by means of the matching 
method. Subsequently, Shen t Keller (1975) constructed a uniform asymptotic 
approximation based on special functions using the ideas of Langer (see Olver 1974) 
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and Ludvig (1966). However, they did not carry out detailed calculations for the case 
under consideration here. We note that perhaps it is more appropriate to use a model 
equation of the form 

v(c)+[-'v(~)+€-2c-;-'(c1-g)v(c) = 0, (1.16) 

[ = el corresponding to the caustic and 5 being the phase in Shen & Keller's notation, 
instead of their equation (6.8), and the equation 

v ( € - " ) + € 2 c - 1  l l / ( € - 2 c ) + € 2 p v ( € - 2 c )  = 0 (1.17) 

with solution V(7) = J0(27;) instead of the Bessel equation in the case of a single 
shoreline, because the use of (1.16), (1.17) does not involve the square-root 
singularities of the phase function 5 at the shoreline, contrary to (6.8) of Shen & 
Keller (1975) (see formula ( C . l l )  of their paper). This weak singularity of the phase 
does not affect the validity of the leading term of the asymptotics but can hinder the 
construction of corrections. It turns out  that the uniform (simultaneously in 7 and 
n) asymptotics of the eigenfunctions can be obtained in the form (1.6), where 

1 f(P) = 4 exp (-iS(p)/e), a = ao@) +"al(p) + * * * 9 (1.18) 

so that Z ( 7 )  is an inverse Fourier transform of a rapidly oscillating exponential (cf. 
Maslov 1972). The functions S, as in (1.18) depend parametrically on v. The function 
Z(7) satisfies the boundary conditions (1.7) if (1.13), (1.15) are fulfilled. At small n 
we get modulo a factor 

where L, are Laguerre polynomials (see $3). Equation (1.19) coincides with Miles' 
result 

Z(7) - L,(27/4 exp ( -7 /4 ,  (1.19) 

Z(7) - L,(2h/e) exp ( -h /EL (1.20) 

because vN exp (-y/e) = O ( P )  for 7 2 0 and all N ,  so that the function h in (1.20) 
may be expanded in powers of 7 and only the leading terms are substantial. We note 
also that asymptotic form of Ursell's solution for small n and /3 coincides with (1.19). 
This fact is easily obtained from the integral representation of the eigenfunctions (see 
Whitham 1975). Thus in this case the geometrical optics approximation (modified in 
the sense of Maslov 1972) is valid for modes of small number. 

For large n the structure of the eigenfunctions is somewhat more complicated. At 
the internal points of the interval (0, a,), where qo is the turning point, tanh h(q,) = 
A,, they are expressed through the standard WKB formulae, in the vicinity of the 
turning point - through the Airey function and in the vicinity of the point 7 = 0 - 
in terms of the Bessel function J ,  (see $3). 

All these results can be obtained by means of (1.16), its solution having the form 

(1.21) 

where M(a,  b,  z )  is the confluent hypergeometric function. However, the construction 
of corrections becomes much more tedious and the geometric interpretation of $2 is 
not so clear when this method is used. The results of $3  can be obtained by means 
of the asymptotic expression of (1.18) through (1.21) according to the generalized 
stationary phase method (see Olver 1974), the asymptotic forms of the confluent 
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hypergeometric function providing the non-uniform formulae mentioned above. We 
do not give here the corresponding calculations because they are rather lengthy and 
eventually lead to the same results. 

2. Construction of the asymptotic eigenfunctions 
Supposing that the integration in (1 .5)  is carried along a closed contour C and 

integrating by parts, we get 

exp [i(P7--S)/ElL(7, P) a@) dP 

where the operator 9 is defined by the equality 

Carrying out this procedure with the second integral in (2 .1)  and reiterating, we get 

exp MP7 -S)/~l{L(Sp, P) a+ isY[Lal(S,, P) 
I =  s, 

-2 LP[La](S,,p) + ... + (ic)fl P[La](S,,p) + ...} dp. (2 .2)  

Substituting the expansions a = a, + €al + . . . , A =A,  + 2 A, + . . . into (2 .2)  and 
equating to zero the coefficients at  eo, el, .  . . in the integrand, we get 

1-0 1-0 

where 

L,  = -A, cosh Kh(q), L, = i-l(Az-l cosh Kh(q)-iAE-,ph'K-l sinh ~ h ( q ) ) ,  12 3.  

At m = - 1 (2 .3)  gives (1 .13)  where h = A,, q = Sp. This equation is equivalent to 

&I,+ U(q,  A,) = - t ,  (2 .4)  

where U(q,  A )  = -uz(hh(q)) /2h2(q) ,  u ( z )  is the inverse function to z tanh z. The 
function U - l / q  as q + 0 and its graph for monotonic h(7) is shown on figure 1 .  From 
the point of view of classical mechanics, (2 .4)  describes a particle of mass unity and 
momentum p which moves in a field with potential U at the energy level E = -a. 
The motion of this particle is finite when V, = limQ+m U(q,  A,) > -8, that is, A, < 
tanhh(m). These motions correspond to the trapped wave modes. The phase 
trajectory of the particle is given by the equality q = q@,A,) .  The function q is 
smooth, if, say, h'(q) > 0 for 0 < q < qo and U, > -4. A typical trajectory of this kind 
is shown on figure 2 by a continuous line. If A, 2 tanh h(oo),  the phase trajectory 
splits into two separate parts, shown on figure 2 by dotted lines. This case 
corresponds to waves that belong to the continuous spectrum and do not vanish at  
infinity. 

The equality q = S, gives 

(2 .5)  
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FIQURE 1. Effective potential. 
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FIGURE 2. Phase trajectories at different values of A. 
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Consider (2.3) for m = 0: 

~ [ L , a O 1 ( S , , p ) + ~ , a O  = 0. 

f ( Y ) - - - f ( Z )  = (Y-4 f’(ey+(1-e)4de 

a L 0  aol(S,, P) = Lo,, a, +Lo, ao, +&,,, s,, a, 

Lo, a,, +Lo,, a0 + &,,, s,, a0 + Ll a0 = 0. 

Hadamard’s lemma 

J: 
gives 

and (2.6) transforms into 

Using the identities 

489 

(2.6) 

where M(7,p) = K tanh ~ h ( y ) ,  we get from (2.7) 

d 
-aoM!) (!I@, P) = 0. (2.8) 
dP 

Thus a, = const x My;. Choosing const = 1 ,  we get the main term of the eigenfunction 

Consider now the analytic properties of the functions a,, S. The function q(p,  A )  is 
analytic in p for sufficiently large lpl, say, lpl > R, owing to the analyticity of h(7)  for 
small 7, q - O(lpl-z), Ipl +co. Therefore, S is analytic for (p(  > R on the complex plane 
p with a slit along the imaginary axis. Choosing the branch of the function (p2+ 1): 
that coincides with arithmetic square root for real p, we see that the integrand in 
(2.9) is analytic on the plane with the slit for Ipl > R. Now we choose the contour C 
in the following way : C consists of the part of the real axis for Ipl < R and the arc of 
a circle of radius R for I m p  > 0. On the left and right edges of the slit we have 

00 

S(iR+O) = S(co)-I qdp, 

S(iR-0) = S( - co)-rrn qdp. 

iR+O 

iR-0 

(2.10) 

(2.11) 

Owing to the analyticity of q, the second summands in (2.10) and (2.11) are equal to 
each other. The full variation of the argument of the function K along C equals K. 
Thus the full variation of the argument of the integrand in (2.9) equals 2S( c o ) / ~ -  n. 
We see now that if (1.13) is fulfilled, the integrand is analytic in the full 
neighbourhood of the infinity without the slit and (2.9) defines a function analytic in 
y, otherwise the integral in (2.9) taken along the real axis has a logarithmic 
singularity a t  the origin. Thus the first condition in (1.7) is fulfilled only if (1.13) 
holds. The condition at infinity is fulfilled because, for large y,Iy -Spl >, const 7 and 
it is possible to integrate (2.9) by parts to obtain Z ,  = O(eN q-N ) for all X and y -too. 
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Consider now (2.3) for m 2 1. By the same argument as above, we get 

d 
-u,M$, = F,, 
dP 

j=o 1-0 

The solution of (2.12) is 

a, = M;; F,(p) dp. 1: 
The function a,  exp [i(py-S)/s] is analytic at infinity only if 

r F m d p  0 = I m F m d p .  0 

(2.12) 

(2.13) 

(2.14) 

The value A, enters F, only through the term containing L,,, and (2.14) gives 

m 

A ,  aidp = - [ G,a,/bdp. (2.15) 
J -m J -m 

By induction it is easy to see that G ,  is an even function for odd m and odd function 
for even m. Therefore A,, = 0, 1 = 1,2 ,  ..., and (2.15) defines A, for odd m. Rather 
tedious calculations show that (2.15) for m = 1 gives (1.15). Thus the full asymptotic 
expansion of Z(y) is obtained through (1.6), (1.18). 

Construction of the eigenfunctions for the shallow-water equation (1.8) is carried 
out according to the same formulae, the functions L, being replaced by L; = i-l A,-,, 
the function U in (2.4) by A/2h(q), M(y,p) by (p2 + l)h(y) and b(p)  by unity. 

3. Representation of the eigenfunctions for different values of parameters 

n,q = O(E), A, = O(E) .  As Miles (1989) has shown, 
First we consider the case n - O( 1) .  Equations (1.12) and (1.13) show that for such 

A, = €(2n+l )+€2hN(O) (n2+n+~)+  ..., q =  €K-z(2n+l)+... 

As we have already noted in 5 1, equation (1.15) after rather lengthy but elementary 
calculations gives A, = ~h"(O)+O(s), and (1.14) transforms into (1.9). Consider the 
formula for the eigenfunctions. We have S/a = (2% + 1) tan-' p+ O(s), a, = K-' + O(a). 
Dropping the O(s) terms and taking into account the equality tan-'p = 
(1/2i) In (i-p)/(i+p), we get 

This expression is equal to (27r/a)i multiplied by the residue of the integrand at p = i. 
The residue is readily calculated and we get the formula (1.19) modulo a factor. 



Edge waves on a gently sloping beach 49 1 

Consider now large n N 1 / E .  The stationary points p,,, of the integral representing 
Z are given by 7 = q(p,h,). Obviously, p, = -13,. These stationary points are non- 
degenerate for S < T,J < qo-S, where 6 is an arbitrary positive number. Carrying 
through the appropriate standard calculation, for such 7 we get Keller's (1958) 
formula 

For r,~ = qo the stationary point p, = p, = 0 is degenerate, s"(0) = 0. Expanding the 
phase and the amplitude in Taylor series in p and leaving only the terms of order p3 
and 1 respectively, we get quite standardly for 17 - qol < 1 

where a = -qpp(O,hO) > 0. In the small vicinity of the point 7 = 0 the stationary 
points are also degenerate. We note that only the integral along the arc gives a 
significant contribution to the asymptotics at  small 7. For large Ipl we can leave only 
the leading terms in the expansions of the phase and the amplitude : a, - f lip, 
S -S( fco ) -A , /p ,p+m,Rep~O.  Thus weget 

( - l)n+l i Jb exp f? + 2) dp. z-- 1 
(27CE)H 

(3.1) 

Here the integral is taken along the arc Ipl = R, I m p  > 0. We note that the same 
integral taken along the arc IpI = R, I m p  < 0 is of order €1 for 7 < h,/R2. Therefore, 
changing 2 by O(ei), we can assume that the integration in (3.1) is carried along the 
circle Ipl = R. Using the well-known integral representation of the Bessel function 

where C ,  is the unit circle, we get finally for 0 < 7 < 1 

Z ( 7 )  - ( 2 7 4  ( -  l ) n  J0(2h,?$/€). (3.2) 

This fact is not at all surprising, the function (3.2) being the inner asymptotic for the 
shallow-water equation (1 A). 

4. Edge waves in a rotating basin 
The linearized equations of stratified or rotating fluid motions for certain values of 

the parameters involved can be reduced to the boundary-value problem for equation 
(1.1) with condition (1.2) at the free surface and a mixed condition at the bottom. 
Greenspan (1970) and Evans (1989) have constructed the analogues of Ursell's set of 
edge waves trapped by a beach of constant slope for exponentially stratified and 
rotating fluid, respectively. We consider here only the case of rotation (the case of 
exponential stratification can also be treated in a similar way). 

Evans (1989)t has reduced the initial linearized system of equations describing the 
motion of a fluid in a basin rotating with angular velocity 51 directed vertically 

t Note that there are two misprints in Evans' paper : in Appendix B s = 2Q/w and a = f ks sin B 
must be used instead of Q/w and f k sin B, respectively. 
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upwards, to  a system which in the coordinates q = eky, 5 = pkz, p = ( 1  - y2)-i ,  y = 
2Q/w coincides with (1.1), (1.2) (the function h being replaced by ph and h by v = 
A/p). Instead of (1.3) the bottom condition has the form 

&fEyh'$+e2phyB = 0, 5 = -ph(q), (4.1) 

where the f signs correspond to the factor cos ( w t j k x )  in the solution. Seeking the 
solution of this system in the form (1.4) with A replaced by v we get (1.6) where 
instead of Lo,l the functions 

Lf, = v cosh pKh-K sinh plch, 

Li = h'(pp - iyp) (cosh pKh - YK-' sinh p ~ h )  

are used. The same argument as in $2 gives the equations 

K tanh pKh(q) = v,, (4.2) 

(4.3) 

where W = K tanh p h ( q )  and Ff,  = 0 for m = 0 and is given by the same formula as 
in (2.12) for m > 0 with M replaced by W ,  b by b, = cosh pKh and L, by Li according 
to 

Lfl = - v l  cosh pKh, 

The solutions of (4.3) are 

Li = i-' [vG-' cosh pKh-ivl-2(p-iy)ph sinh pkh], 1 2 3. 

a,, = (q ) - i  exp ( ~ i y  tan-' p), 
P 

a, = (%)-: exp ( T iy tan-' p )  1 F f ,  exp ( & i tan-lp) dp. 
J o  

The conditions of the analyticity of the function Z give 

I f + m  I 
+W 

v, J-m la,12 dp = - ~~~ Gf, a, exp ( k 2iy tan-'p)/b, dp. 
(4.4) 

Here G', is the same as in (2.12) with appropriate replacements. 
For small n we get v = 6 (272 + 1 f y )  + 0 ( c 2 )  and for 

h = q ,  v = sin ep(2n + 1 f y )  f O ( 2 )  

for all n. The last formula coincides with accuracy O ( 2 )  with Evans' (1989) result 
applied to the case of small slope. 
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